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ABSTRACT Two proteins are considered to
have a similar fold if sufficiently many of their
secondary structure elements are positioned simi-
larly in space and are connected in the same order.
Such a common structural scaffold may arise due to
either divergent or convergent evolution. The inter-
vening unaligned regions (“loops”) between the su-
perimposable helices and strands can exhibit a wide
range of similarity and may offer clues to the struc-
tural evolution of folds. One might argue that more
closely related proteins differ less in their noncon-
served loop regions than distantly related proteins
and, at the same time, the degree of variability in the
loop regions in structurally similar but unrelated
proteins is higher than in homologs. Here we intro-
duce a new measure for structural (dis)similarity in
loop regions that is based on the concept of the
Hausdorff metric. This measure is used to gauge
protein relatedness and is tested on a benchmark of
homologous and analogous protein structures. It
has been shown that the new measure can distin-
guish homologous from analogous proteins with the
same or higher accuracy than the conventional
measures that are based on comparing proteins in
structurally aligned regions. We argue that this
result can be attributed to the higher sensitivity of
the Hausdorff (dis)similarity measure in detecting
particularly evident dissimilarities in structures
and draw some conclusions about evolutionary relat-
edness of proteins in the most populated protein
folds. Proteins 2004;57:539–547.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

Correct functional and structural protein classification
requires an understanding of the underlying phylogenetic
relationships between existing proteins. The protein
polypeptide chain folds into a stable, unique, highly or-
dered conformation, which is necessary for maintaining its
particular function. Many observations strongly suggest
that protein evolution takes place under strong structural
constraints and, as a result, proteins that drifted apart
over time due to divergent evolution may still exhibit
structural resemblance despite the absence of detectable
sequence similarity. Such proteins are examples of remote

homologs sharing the same evolutionary origin. Homology
in these cases can be inferred by similarity in function
and/or by the presence of conserved atypical sequence or
structural features.1 Structural similarity, however, does
not necessarily imply evolutionary divergence. It is be-
lieved that similarity in overall protein topology can occur
independently due to the limited number of topological
arrangements or folding patterns.2–6 This type of similar-
ity caused by convergent evolution is usually referred to as
“analogous.”

Several studies have addressed the problem of distin-
guishing structural similarity due to common origin ver-
sus convergent evolution. Russell et al.,5,7 for example,
found that secondary structures and sequence similarity
were more conserved in remote homologs compared to
analogs, whereas substitution matrices derived from ho-
mologous proteins preserved amino acid chemical proper-
ties and performed quite well in homology recognition. The
success rate in fold recognition experiments was also
shown to be much higher for homologs compared to
analogous fold pairs.7,8

At the same time, it has been observed that the degree of
conservation of chemical properties in proteins decreases
quite rapidly with decreasing sequence similarity for both
homologs and analogs, which makes their populations
almost indistinguishable at large evolutionary dis-
tances.9,10 Indeed, several observations have indicated
that various measures of pairwise sequence and structure
similarity such as sequence identity, root-mean-square
superposition residual (RMSD), the proportion of con-
served side-chain contacts, and others do not distinguish
well between remote homologs and analogs, which sug-
gests that other aspects of protein similarity should be
taken into account.4,10,11

The correct classification of homologous and analogous
proteins requires a choice of sensitive variables of struc-
tural, sequence, or functional similarity. So far, the com-
parative analysis of proteins has primarily focused on
those regions that are recognizably conserved and aligned
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by various methods. The most commonly used measures of
similarity were based on comparing the sequence and
structural features in equivalent aligned positions. How-
ever, given an alignment, the conserved regions are sepa-
rated by nonconserved ones, where the structures and
sequences locally deviate from each other, so that they do
not superpose well. Such regions, which mostly occur via
insertion or deletion (indel) events, appear to be not very
critical for structural integrity but may be quite crucial for
inferring the phylogenetic history of a protein family.
Modeling of insertion–deletion events in evolution is a
particularly difficult task, and many researchers simply
tend to ignore alignment uncertainty during the reconstruc-
tion of evolutionary events. Traditionally, in order to score
insertions or deletions in sequence alignments, affine gap
penalties have been used despite the fact that this simple
model does not adequately describe the evolution of in-
dels.12–14

It was observed several years ago that the probability of
a gap in the alignment of two protein sequences is a
function of evolutionary distance between two homologous
proteins, and there exists a linear relationship between
the number of residues in indels and evolutionary dis-
tance.15,16 One possible explanation of this observation
would suggest an incremental change in loops by stepwise
insertion or deletion processes.17 At the same time, it was
shown that most of the structural variation in aligned
regions of homologous proteins is strongly correlated to the
changes in sequence,9,18–21 while the structural variation
among nonhomologous proteins is not coupled with the
sequence similarity.20,21 Based on the aforementioned
observations, one might argue that more closely related
proteins might differ less in their nonaligned regions
compared to the distantly related proteins; the degree of
variability in loop regions in structural analogs should be
higher than in homologous proteins and in general should
not depend on evolutionary distance. Therefore, one might
gauge the protein relatedness by using, in some way, the
degree of difference displayed by the nonconserved loop
regions.

In this article, we describe a new similarity measure
that takes into account the degree of structural difference
in nonconserved, looped out regions of proteins. This new
measure is based on the Hausdorff metric, which is used in
the branch of mathematics known as topology to define a
distance measure between point sets of a metric space.
Using the benchmark of homologous and analogous pro-
tein structures as a merit of success, we compare the
loop-based Hausdorff measure (LHM) to the conventional
quantities based on scoring the similarity in the aligned
regions. We show that scoring based on loop regions of
protein domains can be as sensitive as conventional scor-
ing in discriminating analogous and homologous folds.
Moreover, we show that the new similarity measure can be
successfully applied to test the evolutionary relatedness
between different proteins of the most populated super-
folds.

MATERIALS AND METHODS
Test Set of Homologous and Analogous Protein
Pairs

Crystal structure atomic coordinates were obtained from
the Protein Data Bank (PDB).22 These files were processed
and their data were added to the National Center for
Biotechnology Information (NCBI) Macromolecular Model-
ing Database (MMDB),23 which is distributed with EN-
TREZ (http://www.ncbi.nlm.nih.gov/entrez/). Domain
boundaries from the MMDB have been identified using a
compactness algorithm,24 and a nonredundant set of do-
mains has been selected by single-linkage clustering based
on a BLAST P-value of 10�40.11 Domains with discontinu-
ous chain trace and domains with X-ray resolution of 3.0 Å
or greater were discarded. Structural Classification of
Proteins (SCOP) release 1.63 definitions for fold and
superfamily categories were used to classify MMDB do-
mains according to SCOP.25 Due to differences in domain
definitions, SCOP domains were matched to MMDB do-
mains to a threshold of 80% mutual overlap.

Structural alignments between the domains from the
nonredundant set were computed by the VAST algo-
rithm.26 Domains with missing coordinates in a crystal
structure due to local regions of disorder in the polypeptide
chain were excluded from the test set. Pairs of structurally
aligned domains with more than 25% sequence identity in
the aligned region and more than 80 residues long were
disregarded according to a threshold of significant se-
quence similarity suggested earlier.27 After the filtering,
we ended up with 9428 pairs of structurally aligned
domains, where both domains from a pair belonged to the
same SCOP superfamily (“homologous domain pairs”), and
10,451 domain pairs that had the same SCOP fold but
belonged to different SCOP superfamilies (“analogous do-
main pairs”). The table of domain pairs with all sequence and
structure similarity measures is available at http://www.
ncbi.nlm.nih.gov/Structure/madej/loops04.htm.

Measures of Structural Similarity

When both domains in a pair have similar tertiary
structures, it means that a number of the secondary
structure elements (SSEs) are positioned similarly in
space, so that they superpose well, with the same chain
connectivity. A region between two consecutive aligned
SSEs is called in this article a “loop region” (or simply a
“loop”). Among similarity measures used in this article,
three (percent identity, RMSD, and fraction aligned) are
based on comparing the structures in the aligned regions,
and the other three measures (sum of the loop lengths,
fraction of loops aligned, and the LHM) quantify the
difference in the loop regions. Root-mean-square deviation
(RMSD) was computed for the VAST structure alignments
using the superposition algorithm due to McLachlan.28

Since RMSD depends on the number of aligned residues,29

we use a “normalized RMSD,” which is the superposition
RMSD divided by the number of aligned residues. “Frac-
tion aligned” is calculated as a ratio between the number of
residues aligned and the number of residues in the smaller
of the two domains.
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The first measure using the loops is calculated as a sum
of loop lengths per aligned segment:

LS �
1

ns � 1 �
i�1

ns�1

�Li
A � Li

B�. (1)

Here, Li
A and Li

B are the number of residues in non-aligned
loop “i” of structures “A” and “B”, and ns is the number of
aligned secondary structure elements, so that ns � 1 is the
overall number of loop regions in a domain pair. The LS
measure has an important property that any distance
function should have, namely, that the smaller its value,
the more similar the structures. Since LS measures the
average number of nonaligned residues, the LS equal to
zero would correspond to the situation when all loops are
completely aligned and structures are globally similar.
Another loop-based measure is the fraction of aligned loops
out of the overall number of loops:

LA �
�ns � nl � 1�

�ns � 1�
, (2)

where nl is the number of nonaligned loops, meaning those
that are not completely aligned by the VAST algorithm.

To quantify the structural difference between non-
aligned loops, we use the LHM, which is based on the
mathematical concept of Hausdorff metric.30 As we will
only deal with finite sets, we present a simplified math-
ematical definition. Let A � {a1,…,am} and B � {b1,…,bn}
be finite point sets in a Euclidean space. The Hausdorff
distance between the sets A and B is then defined by:

dH�A,B� � max�minjd�a1,bj�,

. . .,minjd�am,bj�,minid�ai,b1�,. . .,minid�ai,bn��. (3)

Here, the terms d(ai,bj) denote the usual Euclidean dis-
tance between the points. In other words, the Hausdorff
distance between the sets A and B is the smallest distance
such that every point ai � A is within this distance of some
point bj � B, and vice versa. Hausdorff distance can be
defined under the assumption that the structural align-
ment between two domains is known and the C� atoms for
both structures are in a common coordinate frame. The
LHM (for loops) is then defined as follows:

LHM �
1

ns � 1 �
i�1

ns�1

hi. (4)

Here, hi � 0, if the ith loop regions do not have any
unaligned residues; hi � dH(Ai,Bi), where Ai contains the
set of C� coordinates of nonaligned residues in the ith loop
of the first structure in a pair, the last aligned residue from
the preceding aligned region, and the first aligned residue
from the following aligned region. Similarly, Bi is defined
for the second structure in a pair. The sets (Ai, Bi) are
defined to include two aligned residues, so that the mea-
sure can be defined even if one of the sets of nonaligned
residues is empty.

We can also define a HM on the aligned regions in a
structure alignment (AHM). In this case, instead of the

sets that contain the coordinates for the C� atoms in the
loops, we use the coordinates for the C� atoms in the
aligned segments and average over the number of aligned
segments. When used for the aligned regions, the AHM is
highly correlated with the superposition RMSD and tends
to be a little larger (HM, as well as RMSD, is measured in
Angstroms).

It should be noted that our results are robust with
respect to possible inaccuracies in terms of the N- and
C-terminal extensions of the structurally aligned regions.
Assuming the SSEs are aligned correctly, two types of
extension errors can occur. The first one is where the
alignment is not extended far enough to include structur-
ally similar loops, and the second corresponds to the
situation where the alignment is too extensive and in-
cludes structurally dissimilar loops. The first scenario
would shift the distribution of LHM values upwards, but
this shift can be considered minor due to overall structural
similarity in loop regions. The second possibility can be
disregarded as well, since it would manifest itself in large
overall values of RMSD, whereas the average RMSD for
our test set is under 3.0 Å, and less than 1% of the
alignments have an RMSD over 5.0 Å.

Evaluation of Statistical Significance

To distinguish between the two groups of homologous
and analogous domain pairs, we used discriminant analy-
sis.31 This statistical technique constructs a discriminant
function that divides the parameter space into regions so
as to separate the groups as distinctly as possible. The
analysis was done using the linear discriminant subrou-
tine from the Splus2000 package with the default parame-
ters. The method implemented in this subroutine con-
structs a linear discriminant function, computes the
posterior probability of group membership for each obser-
vation, and assigns the observation to the group that has
the highest probability. As a result, a classification matrix
is produced, which gives the fraction of observations
correctly assigned to each group by the discriminant
function. In our case, a good classification would be
quantified by high fractions for both correctly predicted
homologous pairs and correctly predicted analogous pairs.
The discriminant analysis allows us to separate groups of
homologous and analogous domain pairs using different
similarity measures and their combinations. The discrimi-
nant variables that describe each pair include percent
identity in structure–structure alignment, normalized
RMSD, HM calculated for aligned and loop regions, frac-
tion aligned, sum of loop lengths, and fraction of loops
aligned.

The correlation analysis between the measures of se-
quence and structural similarity was performed using
Splus version 3.4. As a measure of correlation quality, we
used the values of the Pearson correlation coefficient (�)
and the squared correlation coefficient (�2). The latter
shows the percentage of the scatter relative to the mean
value explained by the linear model. The P-value under
the null hypothesis that the correlation coefficient between
two variables is zero has been estimated as well. The cases
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with the P-values less than 0.01 were considered as having
statistically significant correlation.

RESULTS
Discrimination Between Homologous and
Analogous Domains Using Different Measures of
Structure and Sequence Similarity

Discrimination between homologous and analogous do-
mains is a particularly difficult task requiring sensitive
discriminant variables that can capture the subtle differ-
ences in structure and sequence between proteins with
similar topology. It is a more difficult task than, say,
distinguishing homologous proteins from the overall set of
nonhomologous proteins. As can be seen from Table I, the
different (dis)similarity scores vary in discrimination qual-
ity, and none of them achieves a perfect classification.
Percent identity, HM, normalized RMSD, and fraction of
loops aligned are among the most sensitive measures,
whereas the HM based on loop regions does particularly
well for predicting both homologous and analogous pairs.
The HM calculated over the aligned part, however, shows
almost as good discrimination as the same measure calcu-
lated for the looped out regions. The observed improve-
ment in the prediction accuracy, therefore, could be due to
the higher sensitivity of the HM in detecting particularly
evident dissimilarities in structures for the overall test set,
while the RMSD score gives almost equal weights on all
parts of the alignment. A linear combination of two
seemingly complementary scores of structural similarity
based on aligned and loop regions (RMSD and LHM)
improves the discrimination, in particular, the correct
assignment of analogous pairs increases by more than 20%
compared to the case when a similarity score is based
solely on the aligned part.

Table II presents the discrimination quality achieved
with different variables for the most populated SCOP fold
categories (superfolds) from our test set. In agreement
with our previous results, loop-based measures are shown
to perform comparably to measures that are calculated
based on the aligned part. As can be seen from the Table II,
for several folds, the RMSD score classifies homologous
and analogous pairs better than other scores, which could
be explained by the fact that the RMSD score more
precisely captures the difference in the sets of long-range
tertiary interactions stabilizing given superfold.

Although the goal of this work has not been to achieve
the highest possible discrimination quality per se, here we

offer a comparison with the results of homolog–analog
discrimination obtained by other independent methods. In
order to do so, we need to reformulate the problem of
classification of homologous and analogous pairs into the
problem of discriminating homologous pairs from all other
structurally similar pairs. For this purpose, we defined
homologous pairs as true positives, analogous pairs as
false positives, and calculated the coverage of true posi-
tives at 80% reliability level. Coverage was estimated as a
fraction of all true positives found, and reliability was
measured as a fraction of true positives found among all
positively scored examples. As a result, we found that the
linear combination of our 6 discriminant variables, with
the linear coefficients given by the discriminant analy-
sis,31 yields 70% coverage at the 80% reliability level.
Dietmann and Holm,32,33 using neural networks to detect
homology between different branches of a structural simi-
larity tree, reported 65% coverage at the 80% reliability
level. The output from their neural networks was then
used to find an optimal partition of structural similarity
trees in terms of separating clusters of homologous pro-

TABLE I. Main Diagonal of the Classification Table Produced by Discriminant Analysis for Each Discriminant
Variable Used in the Study

% Id RMSD
LHM

(AHM) LS FA LA RMSD 	 LHM All

Correct assignment of analogs (%) 90 57 75 (71) 65 69 84 79 89
Correct assignment of homologs (%) 59 66 64 (60) 58 48 55 66 69

Abbreviations: percent identity (%Id); root-mean-square deviation (RMSD); loop-based Hausdorff measure (LHM); Hausdorff measure based on
the aligned part (AHM); loop length measure (LS); fraction aligned (FA); fraction of loops aligned (LA).
For the last two columns, the linear combination of two (RMSD 	 LHM) and 6 main variables (ALL) are used in the discriminant function.
Elements of the main diagonal give the percentage of pairs correctly assigned to each group by the discriminant function.

TABLE II. Main diagonal of the Classification Table for
16 Superfolds (Percentage of Correctly Assigned

Homologous–Analogous Pairs) for 2 Alignment-Based
and 2 Loop-Based Similarity Measures

SCOP Fold Name %Id RMSD LHM LA

Cupredoxin-like 100/0 100/17 100/0 100/0

-Trefoil 36/94 18/96 0/100 27/96
OB-fold 28/80 52/72 32/78 44/77
TIM 
/�-barrel 10/100 5/100 0/100 2/100
Profilin-like 35/95 94/97 82/92 71/89

-Grasp (ubiquitin-like) 55/91 98/91 71/84 53/64
Adenine nucleotide �

hydrolase-like 57/70 83/65 51/75 43/89
Thioredoxin fold 100/0 100/5 100/0 100/0
Ribonuclease H-like motif 0/92 35/97 0/100 0/100
Ntn hydrolase-like 90/46 94/100 97/0 83/62
Flavodoxin-like 50/97 81/98 48/99 56/96
Four-helical up-and-down

bundle 58/100 68/98 53/98 58/91
Immunoglobulin-like 
-

sandwich 58/93 53/95 39/94 41/93
SH3-like barrel 97/94 100/83 98/90 96/90
Cystatin-like 87/25 96/92 87/58 92/42
Ferredoxin-like 61/100 0/100 31/100 53/97

The complete table is available at http://www.ncbi.nlm.nih.gov/
Structure/madej/loops04.htm.
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teins from all others, which increased the classification
accuracy up to 80% at the same level of reliability. The
Markovian transition model of structural evolution, in
turn, has been shown to find 48% of homologous pairs with
80% reliability.34

Gauging the Evolutionary Relationships of Protein
Superfolds Using Loop (Dis)Similarity Scores

The maximum discrimination accuracy, as presented in
Table III, varies greatly among the 16 largest SCOP fold
categories with more than one superfamily. As can be seen
from Table III, for the majority of superfolds, the fraction
of correctly assigned pairs is greater than 70% for both
homologs and analogs, indicating that the two groups of
homologous and analogous pairs are fairly distinct and can
be divided easily by the discriminant function. Even
though the discrimination accuracy for 9 out of 16 folds is
relatively high, for the rest of the folds, it remains low. To
examine the factors that potentially can limit the quality
of discrimination and to test the ability of our new measure
in gauging homology, we performed a correlation analysis
between measures of sequence and structure similarity for
the sets of homologous and analogous pairs for each
superfold.

As can be seen from Table III, despite the fact that
different homologous pairs from the same superfold can
belong to different SCOP superfamilies, the overall se-
quence–structure correlation described by the Pearson
correlation coefficient is quite high for homologous pairs
and for all but one case can be considered statistically
significant. This result is consistent with previous observa-
tions about the linear relationship between sequence and
structure similarity for families of homologous proteins

and suggests similar mutation sensitivities (the amount of
structural change per sequence change) among different
superfamilies of the same fold.20,21 Interestingly enough,
the LHM used as a structural similarity measure for
homologous pairs yields almost as high of a correlation as
the normalized RMSD, and the squared correlation coeffi-
cient (�2) can be as high as 0.62 and 0.81 for LHM and
RMSD, respectively.

It is also evident from Table III that the sequence–
structure correlation observed for analogous pairs of super-
folds in general is much lower than is observed for
homologous pairs. Comparing the results of discrimination
and correlation analysis for the same superfold, one can
see that the linear correlation between structure and
sequence similarity for analogous pairs is not usually
statistically significant for the folds with high discrimina-
tion accuracy, suggesting that the SCOP classification in
many cases may reflect correct evolutionary relationships
between existing proteins. At the same time, superfolds
with the notable sequence–structure correlation for analo-
gous pairs, such as cupredoxin, 
-trefoil, OB-fold, and the
TIM 
�-barrel fold (top 4 rows in Table III), show limited
discrimination quality between homologs and analogs.
This observation supports the hypothesis about the pos-
sible common evolutionary origin for all proteins sharing
these folds, even though they belong to different SCOP
superfamilies.

This conclusion is also supported by the analysis of
similarity–dissimilarity in the loop regions for the top
superfolds. Figure 1, for example, shows the dependence of
the LHM calculated for homologous and analogous pairs of
TIM barrels on the sequence divergence. As can be seen
from Figure 1, although the correlation between LHM and

TABLE III. Classification Accuracy and Measures of Linear Correlation Between Structural and Sequence Similarity for
Homologous and Analogous Pairs for 16 Superfolds

SCOP Fold Name Discrimination Accuracy
�(Rmsd) for
Homologs

�(LHM) for
Homologs

�(Rmsd) for
Analogs

�(LHM) for
Analogs

Cupredoxin-like 98/58 �0.59* �0.72* 0.63 �0.81*

-Trefoil 64/95 �0.90* �0.74* �0.15 �0.42*
OB-fold 56/79 �0.52* �0.52* �0.26* �0.35*
TIM 
/�-barrel 22/99 �0.70* �0.63* �0.23* �0.27*
Profilin-like 94/97* �0.82* �0.79* �0.32 �0.25

-Grasp (ubiquitin-like) 95/90* �0.70* �0.49* �0.21* �0.19*
Adenine nucleotide � hydrolase-like 71/75* �0.49* �0.42* 0.06 0.19
Thioredoxin fold 100/5 �0.61* �0.62* 0.007 �0.18
Ribonuclease H-like motif 35/89 �0.71* �0.73* �0.11 0.14
Ntn hydrolase-like 100/92* �0.81* �0.73* 0.06 �0.1
Flavodoxin-like 83/97* �0.66* �0.59* �0.18* �0.08
Four-helical up-and-down bundle 84/100* �0.67* �0.48* 0.002 �0.06
Immunoglobulin-like 
-sandwich 63/96 �0.54* �0.52* �0.18* �0.05*
SH3-like barrel 98/98* �0.35* �0.40* �0.21* 0.04
Cystatin-like 92/100* �0.34 �0.36 0.25 �0.02
Ferredoxin-like 82/100* �0.46* �0.38* �0.07 �0.02

The first column reports percentage of correctly assigned homologous–analogous pairs using a linear combination of 6 main discriminant
parameters. The second and third columns show the Pearson correlation coefficients for the dependencies of RMSD and LHM on sequence
identity calculated for homologous pairs. The last two columns list Pearson correlation coefficients for the same type of dependencies calculated
for analogous pairs of each superfold. Asterisks next to the classification parameters indicate those cases where more than two thirds of homologs
and analogs are classified correctly. The folds that have statistically significant linear correlation defined by P-value � 0.01 are indicated by the
asterisks next to their correlation coefficients.
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sequence identity is somewhat more pronounced for ho-
mologous pairs, the correlation observed for analogous
pairs is also significant, even for sequence identity less
than 25%. It should be noted that the correlation coeffi-
cients between percent identity and LHM for the top
superfold’s analogous pairs are significantly higher than
the correlation coefficients obtained with the RMSD mea-
sure.

There is much data from the literature favoring the
scenario of divergent evolution for the 4 aforementioned
folds. For example, cupredoxin-like folds span a wide
range of functions, ranging from electron carrier proteins
and oxidases to the blood coagulation factors. The observa-
tion that the loop regions in cupredoxins change gradually
with respect to the sequence led investigators to conclude
that cupredoxins, blue oxidases, and related proteins have
probably evolved from a common ancestor.35 Our data
support this observation. As can be seen from Table III, the
correlation coefficient between percent identity and LHM
for cupredoxin’s homologs surpasses the one obtained with
the normalized RMSD, which can be explained by the
importance of loops of cupredoxin domains in catalysis and
interdomain interactions. The correlation obtained with
LHM for analogous pairs of this fold (although not sup-
ported by as much data as for the homologous pairs) also
strongly suggests the common origin of different proteins
sharing this fold.

Other investigators have analyzed the statistical signifi-
cance of sequence similarity in structure–structure super-
positions of 
-trefoil proteins and concluded that many
families sharing this fold, such as fibroblast growth fac-
tors, interleukin-1s, Kunitz soybean trypsin inhibitors,
ricin-like toxins, and others, are homologous.36 At the
same time, it has been demonstrated that many proteins
from OB-fold have common features in their topology,
nature of the ligands and the fold-related ligand-binding
interfaces, all of which suggests an ancient origin of this

fold.37 As regards the TIM barrels, statistically significant
sequence evidence has been provided to support a common
origin of at least 12 of the TIM barrel superfamilies from
SCOP.38 The examination of structural alignments of TIM
barrel representatives revealed similarity in the struc-
tural locations of catalytic residues and common conserved
structural features, such as distinct bulges at the end of

-strands.38

Example: The AdoMet-Methyltransferases and
Dehydrogenases

To illustrate the usefulness of the LHM, we present an
example of presumably analogous proteins, AdoMet-
methyltransferases and dehydrogenases. These two classes
of proteins are structurally similar according to VAST, but
belong to different SCOP fold and superfamily categories.
The AdoMet-methyltransferases catalyze the transfer of a
methyl group from an S-adenosyl-L-methionine (AdoMet)
molecule to various other molecules such as DNA or
another protein. The dehydrogenases are typical examples
of the Rossmann fold and mostly include oxidoreductases
catalyzing the conversion of numerous types of biomol-
ecules. Both the methyltransferases and the dehydroge-
nases are diverse protein families of ancient origin that
participate in a wide range of biochemical processes.

As a specific example, we consider VAST alignments
between a methyltransferase (1KPG chain A) and two
different dehydrogenases: sorbitol- and alcohol-dehydroge-
nases, as shown in Figure 2 (1E3J chain A, 1JVB chain A).
Although the sequence identity between the methyltrans-
ferase and the dehydrogenases is in the twilight zone at
19%, the common core elements and loop regions display a
high degree of structural similarity, with an RMSD under
3.0 Å and LHM under 6.0 Å. There is a large insert in the
methyltransferase, as can be seen at the top of Figure 2,
but the LHM remains low because of the averaging over
the other loops. One can obtain a multiple alignment by
reindexing the 2 dehydrogenases with reference to the
methyltransferase. The examination of this reindexed
alignment reveals an unusual conserved bulge at the end
of one 
-strand, which corresponds to the conserved se-
quence motif “xxxGxG” described previously.39 This local
structure, which is highlighted in Figure 2, forms a part of
the binding pocket for the AdoMet-molecule in the methyl-
transferases and includes the coenzyme-binding region in
dehydrogenases. The conserved sequence motif is thought
to maintain the overall position of the coenzyme molecule,
although the residues apparently do not directly interact
with the ligand.40

To analyze the frequency of occurrence of this sequence–
structure motif, we searched all domain pairs (including
also the VAST neighbors from different SCOP fold catego-
ries) for subsequences of 6 aligned residues with sequence
motif “xxxGxG,” and with the C� atom geometry con-
strained (within 3.0 Å) by a distance matrix derived from
the 
-bulge. We detected 248 occurrences of this motif
among the approximately 10,000 homolog pairs and only
226 occurrences in 28,000 analog pairs defined as VAST
neighbors; among the latter, 197 involved methyltrans-

Fig. 1. The standardized LHM is plotted against percent identity for
homologous pairs (circles) and analogous pairs (triangles) of the TIM-
barrel fold. The error bars are extended from the median values to the
upper and lower quartiles. LHM is standardized by subtracting the mean
value and dividing by the standard deviation of overall LHM distribution for
TIM barrel fold pairs.
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ferase–dehydrogenase pairs. Thus, the evidence that we
present here hints at a possible evolutionary relationship
between the AdoMet methyltransferases and the dehydro-
genase domains: their general structural similarity, simi-
larity in the loop regions as shown by the low values of the
LHM, conserved sequence motifs, and atypical conserved
local conformations in the binding pockets of these pro-
teins. Indeed, this case for homology is also supported by
other studies in the literature.41,42

DISCUSSION AND CONCLUSIONS

Here, we have presented a new loop (dis)similarity
measure based on the concept of the Hausdorff metric. Our
results suggest the exceptional importance of comparative
analysis of loop regions in gauging protein relatedness.
This conclusion is supported by two key observations.
First, the LHM and other loop measures are found to be
almost as sensitive as the similarity measures based on
the aligned regions in classification of homologous and

analogous domain pairs. A linear combination of structure
similarity scores based on aligned parts and loop regions
(RMSD and LHM) considerably increases the discrimina-
tion for our test set compared to the case when the score is
calculated from the aligned part alone (RMSD).

Second, we showed that the analysis of correlation
between LHM and sequence identity for domain pairs
classified as analogous by SCOP supports the model of
gradual structural change versus sequence change for 4
superfolds: cupredoxin, 
-trefoil, OB-fold, and the TIM

�-barrel. The sequence–structure correlation is statisti-
cally significant for these cases, and correlation coeffi-
cients are higher if structural similarity is measured by
LHM rather than by the RMSD score based on the aligned
part.

Indeed, loops apparently do not contribute much to the
protein core stability, which, in turn, constitutes the most
important constraint in the convergent evolution of struc-
turally similar proteins. Relaxed evolutionary constraints

Fig. 2. VAST alignments between an AdoMet-methyltransferase (1KPG chain A) and two domains from
dehydrogenases: sorbitol dehydrogenase (1E3J chain A domain 2) and alcohol dehydrogenase. The
nonaligned residues are shown in gray; aligned residues are colored with blue, red, and green. Red indicates
identical sequence types, and an unusual sequence–structure feature involving 6 residues is highlighted by
green (pattern “xxxGxG”). Nonaligned N- and C-terminal portions of the chains are not shown.
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on loops allow them to evolve rapidly and rather indepen-
dently from the protein core.17 At the same time, potential
constraints imposed on loops by the folding requirements
of structurally similar but unrelated proteins would mani-
fest themselves mostly in similar loop lengths and not
necessarily in loop structural similarity. Therefore, one
can speculate that statistically significant linear correla-
tion between evolutionary distance (measured simply as
sequence identity in our case) and loop structural similar-
ity may arise only as a result of incremental changes in
sequence and structure during divergent evolution. The
aforementioned observations, together with the low dis-
crimination quality between homologous and analogous
pairs for the top 4 superfolds, allow us to suggest the
common evolutionary origin between all protein domains
within given folds. Various data from the literature sup-
port this hypothesis as well.

We should note, however, that low discrimination qual-
ity and high sequence–structure correlation are necessary
but not sufficient conditions to hypothesize homology, and
structurally similar pairs of homologous proteins should
not automatically exhibit the limited classification accu-
racy and high sequence–structure correlation. For ex-
ample, SH3 domains evolved through an early horizontal
gene transfer between eukaryotes and prokaryotes, with
the consequent independent evolution in eukaryota and
bacteria.43 It resulted in substantial differences in func-
tion between SH3 domains of these two kingdoms, and this
distinction has been recorded in the SCOP database,
where prokaryotic and eukaryotic domains belong to differ-
ent superfamilies. Our analysis, in turn, showed that
almost all homologous and analogous pairs for the SH3
fold are classified correctly, resulting in 98% discrimina-
tion accuracy, although all of them are presumably homolo-
gous.

We envision several other practical applications of the
LHM. As a measure of structural dissimilarity in non-
aligned regions in structure–structure superpositions, it
could be used to penalize structurally dissimilar aligned
parts or loop regions in scoring the large-scale global
structural similarities. It also would be important in
clustering protein structures with similar overall topolo-
gies but different loop regions, and in evaluating the
models obtained in threading or homology modeling. Sta-
tistics containing information on gap structural similarity
from structure–structure alignments might be used for
improving the gap penalties in sequence alignment meth-
ods. And last, phylogenetic analysis can benefit from the
new scoring function, since it provides an alternative
measure of relatedness between structurally similar pro-
teins and presents a means for modeling insertion and
deletion processes in evolution of protein structures.
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